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Abstract. A two dimensional antiferromagnetic spin-1 Ising model with negative next- nearest neighbour
interaction (J2 < 0) and under an external magnetic field is investigated by two methods: The mean-field
theory and Finite-Size-Scaling based on transfer matrix (TMFSS) calculations. The ground state diagrams
exhibit several new phases including frustrated ones. At finite temperature we obtain by these two methods
quite rich phase diagrams, with several multicritical points. While Mean field approximation yields phase
diagrams which are sometimes even qualitatively incorrect, accurate results are obtained from transfer
matrix finite size scaling calculations. For a certain range of interaction parameters, the model is shown
to violate the ordinary universality hypothesis.

PACS. 75.10 Hk Classical spin models

1 Introduction

The Spin-1 Ising Blume-Capel model [1] and its general-
ization the Blume-Emery-Griffiths model (BEG) [2] are
useful for representing a variety of physical and chemical
systems. These models have been proposed to describe su-
perfluidity and phase separation in He3–He4 mixtures [2]
and ordering in a binary alloy [3]. Various extensions of
these models have found applications in the description of
the properties of many substances [4].

The Blume-Capel (BC) model has been studied by dif-
ferent methods: mean- field approximation (MFA) [1], ef-
fective field theory with differential operator technic [5],
Monte-Carlo simulation (MC) [6], transfer-matrix finite-
size-scaling (TMFSS) [7], series expansion methods [8] and
constant-coupling approximation [9]. All these methods
affirm the existence of the tricritical point in the phase
diagram.

In the case of a two-dimensional triangular lattice,
Collins et al. [10] have shown that the S = 1 Ising model
is equivalent to the three state lattice-gas model used to
describe [11] multicomponent chemi- and physisorption
problems. They have used TMFSS to obtain adsorption
isotherm data which are in good correlation with experi-
mental systems. To model poisoning phenomena, Collins
et al. [12] has added to this model nearest-neighbour lat-
eral interactions. MC simulation and TMFSS calculations
have been used to understand the topological details of
the phase transition surfaces that allow the determination
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of these poisoning criteria. They have shown that these
longer interactions strongly affect the global topology of
the phase transition surfaces, but they don’t destroy the
features which cause poisoning effects. New features have
been found in the usual BEG model with negative bi-
quadratic interaction. It shows six new topologies with
new phases (ferrimagnetic and antiquadrupolar) and mul-
ticritical points of higher order [13,14]. Recently Buzano
et al. [15] added to the usual BEG model a repulsive pla-
quette interaction and studied it by the cluster variational
method on a square lattice, they found new phases in
the phase diagrams: a ferrimagnetic and a weakly ferro-
magnetic phase and several multicritical points. Also, the
Blume-Capel model with ferromagnetic second neighbour
interaction [16] has been used to explain the dependence of
the position of the tricritical point on the relative strength
of the second to the first neighbour interactions, in order
to describe such behaviour observed in some rare-earth
multilayers [17].

The Spin-1 Blume Capel model with ferromagnetic
or antiferromagnetic interaction under an external mag-
netic field [18,19] belongs to the Ising universality with
the known critical and tricritical values of critical expo-
nent [20]. The extension of this model to higher spin-order
(S = 3/2) has led to ferrimagnetic and antiferrimagnetic
phases in the phase diagrams with a variety of multicrit-
ical points of higher-order within MFA [21]. Numerical
studies, by means of TMFSS calculations and MC simu-
lations [22], confirm the main qualitative features of the
phase diagrams but with only tricritical and critical end
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points. The critical and tricritical exponent calculations
yield that these models also belong to the Ising universal-
ity.

It is believed that a non universal behaviour appears
when interactions of longer range are added to these mod-
els. Indeed, several Ising spin models exhibit under certain
conditions non universality, unlikely any explanation is
available for such problem. Binder et al. [23] have stud-
ied the antiferromagnetic spin-1/2 model, with repulsive
second-neighbour and a magnetic field interaction by MFA
and MC simulation, and have found that the model be-
longs to the weak Suzuki universality. When the second
neighbour interaction is not the same, we have the two di-
mensional asymmetric next-nearest-neighbour Ising model
(ASYNNNI) which has been introduced earlier [24] to ex-
plain oxygen ordering in YBa2Cu3Oz. Bartelt et al. [25]
have shown that critical properties of this model can be
understood by making an analogy with the Ashkin-Teller
model. Their TMFSS calculations confirm this picture.
They have found that this model exhibits the Ising uni-
versality for the tetra-ortho-1/2 and ortho1/2-ortho-1/4
transitions but for the tetra-ortho-1/4 transition it be-
longs to the universality class of the XY model with cubic
anisotropy. Also Aukrust et al. [26] have used large scale
MC simulation and TMFSSS calculations to confirm these
results. As the interaction parameters are varied, new frus-
trated phases appear in the model. They have been found
by Hilton et al. [27] who performed exact ground state cal-
culations. They have obtained seven topologically distinct
ground state diagrams and by TMFSS methods they have
determined the best values of the interaction parameters
which fit the experimental data. By using the coherent-
anomaly method (CAM), Minami et al. [28,29] studied
the non universal critical behaviour of the Ising spin-1/2
model with second and four spin interactions.

Our aim in this paper is to study the effect of a re-
pulsive second neighbour interaction on the antiferromag-
netic Blume-Capel model under a magnetic field on a two
dimensional lattice. As a matter of fact a negative sec-
ond neighbour interaction introduces frustration which re-
sults in new frustrated ground states. For finite tempera-
ture some interesting behaviours appear where transitions
of second-order and first-order with several multicritical
points of higher-order are present in the phase diagrams.
Also this model exhibits a nonuniversal behaviour for cer-
tain values of the interaction parameters. Two methods
are used in this paper, the mean field theory and the
Transfer-matrix finite-size-scaling (TMFSS).

The remainder of the paper is as follow: Section 2 is
devoted to the model and ground state diagrams. In Sec-
tion 3 we briefly outline the mean field approximation. the
Finite-Size-Scaling theory based on the Transfer-Matrix
Calculations is described in Section 4. Results and discus-
sion are given in Section 5. Finally, in Section 6 we give a
conclusion.

2 The model and ground state diagrams

The model is defined by the Hamiltonian:

H = −J1

∑
〈i,j〉

SiSj − J2

∑
〈i,j〉′

SiSj +D
∑
i

S2
i −H

∑
i

Si.

(1)

Here the spin variables are localized on sites of a square
lattice and take the values 1, 0,−1. The first and the sec-
ond terms describe the antiferromagnetic coupling (J1 < 0
and J2 < 0) between spins on sites i and j, the first

sum
∑
〈i,j〉

is restricted to nearest neighbour pairs of spins

while the second
∑
〈i,j〉′

is restricted to next-nearest neigh-

bour pairs of spins. The third term describes the single
ion anisotropy and the last term represents the effect of
an external magnetic field.

In order to obtain the ground state phase diagrams,we
decompose the lattice into four sublattices: a, b, c and d,
we calculate the energy by plaquette Ep.

Ep = −
J1

4
(SaSb+SbSc+ScSd+SdSa)−

J2

2
(SaSc+SbSd)

+
D

4
(S2
a + S2

b + S2
c + S2

d)−
H

4
(Sa + Sb + Sc + Sd)

(2)

where Sa, Sb, Sc and Sd belong to four different sub-
lattices. Ground state phases are given by configurations
minimizing Ep. Boundaries between different regions are
obtained by pairwise equaling ground state energies, Fig-
ures 1a, b, c.

In the asymptotic strong field limit the Hamiltonian
(1), reduces to that of the S = 1/2 Ising model under
a magnetic field with nearest and next-nearest neighbour
interactions

Ĥ = −Ĵ1

∑
〈i,j〉

σiσj − Ĵ2

∑
〈i,j〉′

σiσj − Ĥ
∑
i

σi. (3)

- For H → +∞, the ground state is ferromagnetic with
all spins up, then Si = −1 becomes unfavorable. Thus
Si = S2

i , and the model reduces to the effective S = 1/2
Ising model with effective interactions defined by:

σi = 2S2
i − 1,

Ĵ1 =
1

4
J1,

Ĵ2 =
1

4
J2, (4)

Ĥ =
1

2

(
H −D + 2(J1 + J2)

)
.

- Analogously, as H → −∞, the ground state is ferro-
magnetic with all spins down, and the Si = +1 becomes
unfavorable. Thus Si = −S2

i , and the corresponding ef-
fective S = 1/2 Ising parameters for this asymptotic limit
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(a)

(b)

(c)

Fig. 1. Ground State Phase diagrams for: (a) |J2| = 1/4; (b) |J2| = 1/2; (c) |J2| = 1.
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are:

σi = 2S2
i − 1,

Ĵ1 =
1

4
J1,

Ĵ2 =
1

4
J2, (5)

Ĵ =
1

2

(
−H +D + 2(J1 + J2)

)
.

- For large positive anisotropy (D→ +∞) we have an uni-
form ground state where all spins are zero, and for large
negative (D → −∞) the state zero becomes unfavorable.
- For |J2| = 1/4 (respectively Strong, |J2| = 1), Figure 1a
(respectively Fig. 1c), we have the antiferromagnetic,
AF +−

−+, (respectively superantiferromagnetic, SAF −−
++)

phases, while for intermediate value of J2, |J2| = 1/2,
Figure 1b, the AF and the SAF phases are degenerate.
- For intermediate values of D and H, new phases ap-
pear in the phase diagram due to the competition be-
tween J2 and J1. A highly degenerate structure, ++

+− where
ferromagnetic rows alternate with antiferromagnetic ones,
with degeneracy 8, is obtained for negative D. While for
small positive D and large H we have also another highly
degenerate structure, 0 +

++ with degeneracy 8. These two
phases exist in the BEG model with negative plaquette
interaction [12]. In addition to these phases, we have also
obtained other new degenerate ones. For |J2| = 1/4, Fig-
ure 1a, a degenerate phase 0 +

+− appears for small positive
D and H and by increasing J2, |J2| = 1, Figure 1c, this
phase shifts to ++

0− , while for |J2| = 1/2, Figure 1b, these
phases are degenerate.

In Figure 1a where J2 is weak the +0
0 + which exists in

the antiferromagnetic Blume Capel model with a magnetic
field [18], remains stable for small J2, but for |J2| = 1
it becomes superantiquadrupolar ++

0 0 , where rows of up
spins alternate with rows of spins 0, Figure 1c, while for
|J2| = 1/2, both phases are degenerate, Figure 1b.

3 Mean-field approximation

We decompose the lattice under consideration into four
sublattices {α} = 1, 2, 3, 4 with corresponding fields {Hα}
which act on the sites of the αth sublattice only and the
ordinary magnetic field is given by:

H =
1

ν

ν∑
α=1

Hα. (6)

Hence the Hamiltonian (1) becomes:

H =
4∑

α=1

∑
j∈α

Heff
α

({
sj

})
si =

4∑
α=1

∑
j∈α

Jijsisj +Hα

i ∈ α (7)

where the average value of Heff
α , is given by:

H̄eff
α = Hα +

4∑
α=1

∑
i∈α

Jij〈sj〉 = Hα +
4∑

α=1

εαβmα (8)

where mα and εαβ are respectively the sublattice magne-
tization and the interaction parameter are given by:

mβ =
4

N

∑
j∈β

〈sj〉 (9)

and

εαβ =
∑
j(6=i)

Jij i ∈ α, j ∈ β. (10)

The mean field Hamiltonian then becomes

Hmfa =
4∑

α=1

∑
i∈α

( 4∑
β=1

εαβmβ +Hα

)
si

−
1

2

4∑
α=1

N

4

4∑
β=1

εαβmαmβ , (11)

the free energy is given by:

Fmfa = −T ln 2−
T

4

4∑
α=1

ln
{

2e−
D
T

× cosh
( 1

T

4∑
β=1

εαβmβ+Hα

)}
+

1

8

4∑
α=1

4∑
β=1

εαβmαmβ .

(12)

Sublattice magnetizations are given by:

mα =

sinh
( 1

T

4∑
β=1

εαβmβ +Hα

)
cosh

( 1

T

4∑
β=1

εαβmβ +Hα

)
+ e

D
T

α = 1, ..., 4. (13)

The stable solutions of (13) are those which minimize the
free energy Fmfa. The nature of the transition, as is well
known will be determined by the behaviour of the order
parameter.

4 Transfer-matrix finite-size-scaling
calculations

Detailed description of the phenomenological finite-size-
scaling method and transfer-matrix formalism on two-
dimensional systems are given in [30,31]. A system of lin-
ear size N is used with periodic boundary conditions, here
only even values of N are considered to avoid the intro-
duction of interfaces and to preserve the antiferromagnetic
phase. With N ′ = N+2 the Nightingale condition [30] for
the determination of the critical point Kc becomes:

ξN (Kc)

N
=
ξN+2(Kc)

N + 2
(14)
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where ξN (K) is the correlation length. The symbol K de-
notes the set of fields K = (T, J2, D, H). The nature of
the transition (first-order or continuous) is determined by
examining the finite-size-scaling behaviour of the persis-
tence length ξ̃ [7,19,22,32]. If the scaled persistence length

ξ̃/N on the transition line is a decreasing function of N
then the transition is continuous, otherwise the transition
is first-order.

The correlation length and the persistence length are
obtained from the three largest eigenvalues of the transfer
matrix. In the transfer matrix (TM) method, the lattice is
approximated by an N×∞ lattice with periodic boundary
conditions in the finite direction. The full 3N×3N transfer
matrix can be block diagonalized using invariance under
one step translation in the transverse direction. The sym-
metric and the antisymmetric blocks, T S (834 × 834 for
N = 8) and TA (831× 831 for N = 8), are the only two
blocks whose symmetries correspond to ordered phases.
We diagonalized them with RS library routines (based on
EISPACK routines) on DEC station 5000/200. The di-
agonalization results in four eigenvalues of interest. The
largest eigenvalue of both T S and the transfer matrix is
λS1 . By virtue of the Perron-Frobenius theorem, it is pos-
itive and nondegenerate. The other three are λS2 and λS3 ,
second and third largest eigenvalues of T S, and λA1 , the
largest eigenvalue of TA. λS3 and λA1 alternate as the sec-
ond largest eigenvalue of the total transfer matrix. These
four eigenvalues give rise to three important lengths. The
correlation and the persistence lengths are respectively
given by:

ξA1 =
(

ln |λS1 /λ
A
1 |
)−1

(15)

ξS1 =
(

ln |λS1 /λ
S
2 |
)−1

. (16)

And the second persistence length corresponding to T S is:

ξS2 =
(

ln |λS1 /λ
S
3 |
)−1

, (17)

which remains small and peaks near the transition be-
tween ordered phases.

The correlation length exponent ν is obtained follow-
ing the argument of Nightingale [30] where a field differ-
entiation is used and is given by:

ν = ln

(
N∂ξ−1

N (Kc)/∂T

(N + 2)∂ξ−1
N+2(Kc)/∂T

)(
ln(N/(N + 2))

)−1

.

(18)

5 Results and discussion

5.1 Phase diagrams

For finite temperature, most of the phase diagrams are
economically obtained from the TMFSS calculations with
N/N ′ = 4/6 and are compared with those derived from
MFA. However, to check the convergence of our results

and the finite-size effects, we have used systems with
N/N ′ = 6/8 for some values of parameters J2 and D.
In order to describe the different entities in the phase
diagrams, we will use Griffiths notations. So following
Griffiths [33], we define the critical end-point BmAn as
the intersection of a number m of lines of second-order
and a number n of lines of first-order. The multicritical
point Bm is the intersection of a number m of lines of
second-order. The n-phase point An is the intersection of
a number n of lines of first-order. In particular, we de-
note by C the tricritical point which is the intersection
of a line of second-order and a line of first-order. Due to
the invariance of the Hamiltonian under the transforma-
tion (H → −H, S → −S) we restrict our study to the
case H/|J1| ≥ 0. Hereafter we list the most interesting
diagrams:

1) when the crystal field is absent, D = 0, we have:

For |J2| = 1/4, Figure 2a, there is a second-order transi-
tion separating the disordered phase from the antiferro-
magnetic and the degenerate ++

+− phases. These ordered
phases are separated by a second-order transition as de-
termined from the behaviour of the persistence length
[22,32]. These lines meet at a multicritical point B3. At
the intermediate value of |J2| = 1/2, Figure 2b, the an-
tiferromagnetic phase disappears and we have only the
degenerate phase ++

+−, which is separated from the disor-
der by a critical line. While for |J2| = 1, Figure 2c, the
disorder is separated from the superantiferromagnetic ++

−−

and the degenerate ++
+− phases by a first-order transition

line which meets for high magnetic field a second-order
transition line at a tricritical point. These two ordered
phases are separated by a first-order transition line.

2) We investigate modifications occurring in phase dia-
grams when the single ion anisotropy is applied.
- For |J2| = 1/4 and D = 1, TMFSS calculations, Fig-

ure 3a, yields a quantitative phase diagram more accurate
than mean field results, Figure 3b. TMFSS yields only a
second order transition separating the disorder from or-
dered phases +−

−+, +0
0 + and 0 +

++ for low, intermediate and

high magnetic field respectively. The inside phase 0 +
+− is

surrounded by a first-order transition line, as well as the
transition line between the antiferromagnetic +−

−+ and +0
0 +

phases, this line is limited by a triple point A3 and a criti-
cal end point B2A1. Whereas MFA gives a first order line
for low and high magnetic field with multicritical points
of higher order. Ordered phases +−

−+ and +0
0 + are separated

by a first-order transition from TMFSS whereas it is of
second order from MFA. Also in the TMFSS calculations
the disordered phase extends to the temperature and sepa-
rates the phase +0

0 + from 0 +
++, phase. This feature is correct

because at H = 5, there are at T = 0 an infinite num-
ber of states on an infinite lattice that are degenerate in
energy. Whereas MFA does not take into account this de-
generacy.
- For |J2| = 1/2 and D = 1/2, there is a degeneracy
between phases appearing for |J2| = 1/4 and |J2| = 1.
TMFSS, Figure 4a, yields a second order transition sepa-
rating the disordered from ordered phases 0 +

+− or ++
0− , ++

+−,
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(a)

(b)

(c)

Fig. 2. Phase diagrams for D = 0.0 as obtained from TMFSS with N/N ′ = 4/6. Continuous and dashed lines denote second
and first-order transitions respectively. (a) |J2| = 1/4. Calculations with N/N ′ = 6/8 are also added to check convergence. A
multicritical point B3 occurs; (b) |J2| = 1/2; (c) |J2| = 1. A tricritical point C and a triple point A3 occur.
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(a)

(b)

Fig. 3. Phase diagrams for |J2| = 1/4 and D = 1.0 as ob-
tained from: (a) TMFSS with N/N ′ = 4/6. There is a criti-
cal end-point B2A1 and a triple point A3. (b) Mean field ap-
proximation. Continuous and dashed lines denote second and
first-order transitions respectively. There are three critical end-
points B2A1, (B1A2)1 and (B1A2)2.

0 +
++. These phases are separated from each other by a first
order transition as determined from the second persistence
length. MFA, Figure 4b, results in a phase diagram differ-
ent from the TMFSS calculations. There is a first order
transition separating (++

−− or +−
−+), (0 +

+− or ++
0− ) and 0 +

++
phases from the disordered phase for low and high mag-
netic field respectively. For intermediate values of H, a
critical line separates the disordered phase from the degen-
erate ++

+−, phase. There is no finite-temperature transition

by TMFSS calculations at low magnetic field from (++
−− or

+−
−+) states which exist as ground states of the model. We
believe that it’s due to the frustration effects (J2) which
disorder the system whereas the magnetic field is too small
to order the system. That is why MFA results in a wrong
topology for the phase diagram at low H.
- For |J2| = 1/4 and D = 2, MFA gives a phase dia-

(a)

(b)

Fig. 4. Phase diagrams for |J2| = 1/2 and D = 0.5 as ob-
tained from: (a) TMFSS with N/N ′ = 4/6. There are two
critical end-points (B2A1)1 and (B2A1)2. (b) Mean field ap-
proximation. Continuous and dashed lines denote second and
first-order transitions respectively. There are two critical end-
points B2A1 and B1A2 and a triple point A3.

gram, Figure 5b, where for low H the 0 +
0 0 phase confined

in the +0
0 + phase. A first-order transition line meets the

critical line at a tricritical point and separates the disor-
der from the +0

0 + phase. For high H, there is a block of

critical points separating the 0 +
++ phase from the +0

0 + phase
and the disordered phase. TMFSS results in a phase dia-
gram, Figure 5a, decomposed into three blocks of second-
order transition separating ordered phases from the disor-
der which extends to T = 0 between ordered phases. This
latter effect is explained by the fact that at H1 = 3 and
H2 = 6, there are at T = 0 an infinite number of states
on an infinite lattice that are degenerate in energy.
- For |J2| = 1 and D = 3.0, TMFSS, Figure 6a and MFA,
Figure 6b, both yield roughly similar phase diagrams.
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(a)

(b)

Fig. 5. Phase diagrams for |J2| = 1/4 and D = 2.0 as ob-
tained from: (a) TMFSS with N/N ′ = 4/6 and N/N ′ = 6/8,
all transitions are of second-order. (b) Mean field approxima-
tion. Continuous and dashed lines denote second and first-order
transitions respectively. A tricritical point C and a critical end-
point B1A2 occur.

The ++
0 0 becomes more stable and is separated by a line

of first-order from the disordered and the ordered phases.
Ordered phases 0 +

0 0 and 0 +
++ are separated from the disor-

dered phase by second order transition from MFA results
while TMFSS gives tricritical points. TMFSS gives triple
(A3) and tricritical (C) points while MFA gives only mul-
ticritical points of higher order B1A2.

5.2 Critical behaviour

In the preceding section we have concentrated on describ-
ing the general characteristics of phase diagrams which
result from the application of a single ion anisotropy and
varying values of |J2|. To discuss the critical behaviour

(a)

(b)

Fig. 6. Phase diagrams for |J2| = 1 and D = 3.0 as obtained
from: (a) TMFSS withN/N ′ = 4/6. There are two triple points
(A3)1 and (A3)2, and two tricritical points C1 and C2. (b) Mean
field approximation. Continuous and dashed lines denote sec-
ond and first-order transitions respectively. Two critical end-
points (B1A2)1 and (B1A2)2 occur.

of this model, we have calculated the exponent ν from
equation (18) with N/N ′ = 4/6 and N/N ′ = 6/8.

Estimated values of ν at |J2| = 1/4 and D = 0, Fig-
ure 7a, are consistent with the Ising value of 1 along the
critical line separating the antiferromagnetic phase from
disorder. At the value (Hp = 3.18, Tp = 0.1540) where
a multicritical point occurs, ν drops to 0.7157 from 6/8
results. For high H and low temperature, ν seems to vary
continuously with the magnetic field. This variation is sim-
ilar for the 4/6 and 6/8 estimates, suggesting that it is
not a finite-size-effect and suggesting that ν should be
nonuniversal. Such features are similar to those obtained
by Aukrust et al. [26] for the ASYNNNI Ising model.
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(a)

(b)

Fig. 7. Estimates of the critical exponent ν as a function of the magnetic field H, calculated from the TMFSS for different
values of the interactions parameters. (a) |J2| = 1/4 and D = 0.0, with N/N ′ = 4/6 (diamonds ♦) and N/N ′ = 6/8 (squares).
Lines are guides to the eye. (b) |J2| = 1/4 and D = 2.0, with N/N ′ = 4/6 (diamonds ♦) and N/N ′ = 6/8 (plus +). Lines are
guides to the eye.

They concluded that at their multicritical point, their es-
timate of the exponent ν is close to the value 2/3 expected
for the four state Potts model. Also in our case the 6/8
result of ν is close to the value 2/3 but large system sizes
are needed to confirm this effect.

For |J2| = 1/4 and D = 2, estimates of ν, Figure 7b,
suggest also a nonuniversal behaviour of ν along the two
critical blocks separating the disordered from the ordered

degenerate phases 0 +
0 0 and 0 +

++, whereas it is Ising like along

the block separating the disorder from the +0
0 + phase.

6 Conclusion

In this paper, we have studied the antiferromagnetic
Blume-Capel model with negative next nearest-neighbour
interaction and a magnetic field. The ground state phase
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diagrams show new phases with frustrated ones due to the
competition between the first and second interactions. Our
model contains some frustrated phases found by Buzano
et al. [15] and presents also other new frustrated phases.
For finite temperature we have used two methods: mean
field approximation (MFA) and finite-size-scaling theory
based on transfer matrix (TMFSS) calculations. The MFA
gives rich phase diagrams with second-order and first-
order transitions. In the phase space (T, D, H), the first
and second order surfaces meet at multicritical lines. The
limitation of the MFA is that it ignores fluctuations which
are very strong in two dimensions but it would be correct
for higher dimensions [23]. Also the MFA fails to account
for vanishing ordering due to degeneracy effects which
make some of the transition temperatures go to zero. It
predicts ordered phases for |J2| = 1/2, thus resulting in
wrong topologies of the phase diagrams. So we have ap-
plied TMFSS calculations in order to take into account
the fluctuations neglected by MFA. The phase diagrams
are more accurate and qualitatively better than those ob-
tained by MFA. Only in certain regions of J2, D and H
the critical behaviour has been analyzed by calculating the
exponent ν, for some values of parameters space. TMFSS
with N/N ′ = 4/6 and 6/8 calculations have shown that
the thermal exponent ν varies with the magnetic field for
some values of the crystal field D and the second neigh-
bour interaction J2. Thus suggesting that this model has
a nonuniversal behaviour. Finally we hope that this model
would provide a rich laboratory for studying a number of
phase transitions, critical and multicritical phenomena.
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